## Course VII-2, 2017

# Basic statistical tests Hypothesis testing

Aya Goto

Center for Integrated Science and Humanities Fukushima Medical University



## What you can learn in this session

- Choosing an appropriate test
- Ways of tabulation
- Analyzing using OpenEpi
- Understanding hypothesis testing
- Interpreting results from descriptive analysis



## **Basic statistical tests**

| Data type                               | Parametric            | Non-parametric                                   |
|-----------------------------------------|-----------------------|--------------------------------------------------|
| Contingency table  E + E - D + D - D -  |                       | Chi-square test Small sample Fisher's exact test |
| Comparison of means                     |                       |                                                  |
| (2 groups, independent)                 | T-test                | Mann-Whitney U test                              |
| (2 groups, paired)                      | Paired t-test         | Wilcoxon signed rank test                        |
| (≥3 groups, independent)                | ANOVA                 | Kruskal-Wallis test                              |
| Association of two continuous variables |                       |                                                  |
| (Correlation)                           | Pearson's correlation | Spearman's correlation                           |
| (Regression)                            | Linear regression     | Median regression                                |

## Analysis of contingency table Relationship of residential region and hypertension

|             | City A | City B |
|-------------|--------|--------|
| HP positive | 20     | 80     |
| HP negative | 40     | 60     |

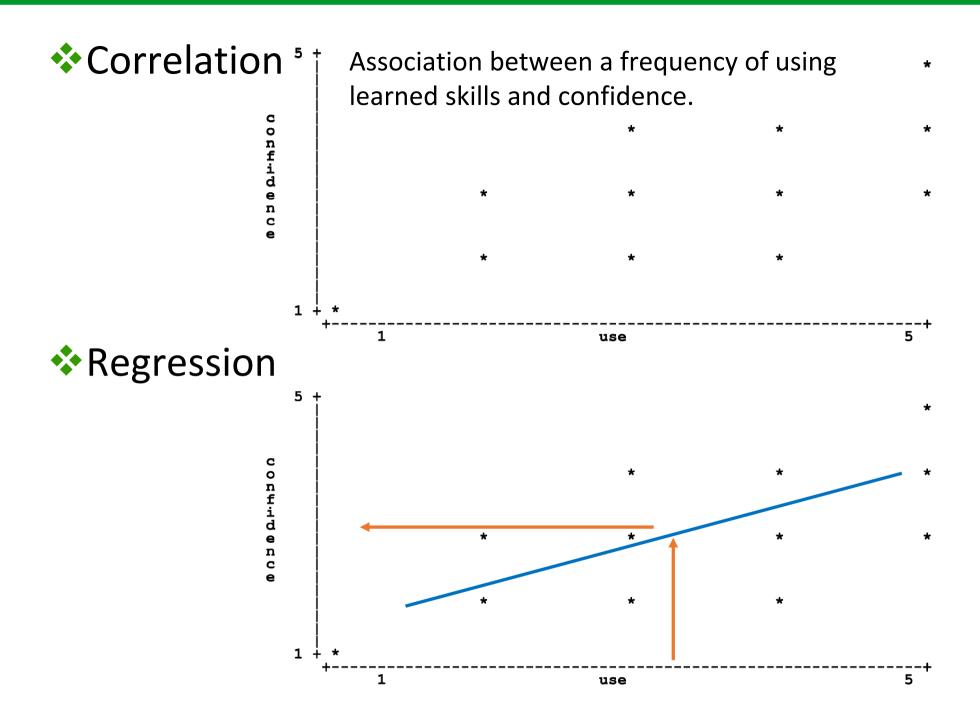
## Comparison of meansRelationship of residential region and blood pressure

|               | City A | City B |
|---------------|--------|--------|
| max BP (mean) | 160    | 140    |



Paired

Before-after study


Matched case-control

|               | Before treatment | After treatment |
|---------------|------------------|-----------------|
|               | N=100            | N=100           |
| max BP (mean) | 160              | 140             |

#### Un-paired (independent)

|               | Placebo | Drug A |
|---------------|---------|--------|
|               | N=100   | N=100  |
| max BP (mean) | 160     | 140    |



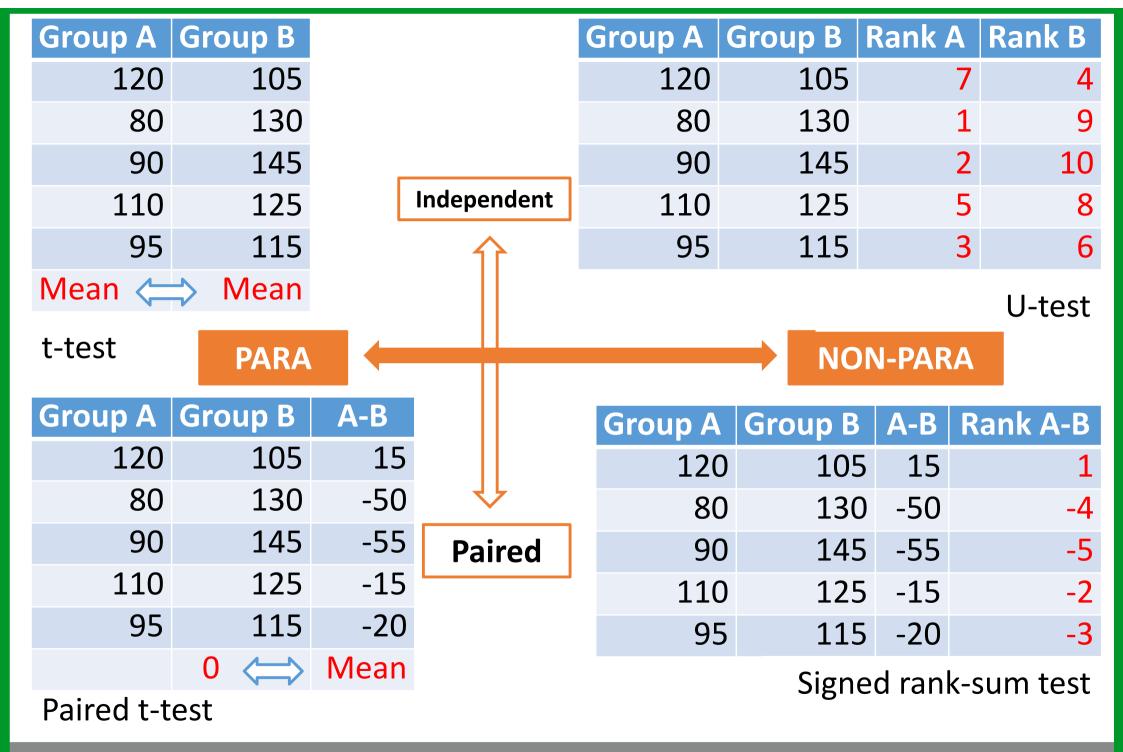


#### Parametric

**Data type: Continuous** 

Sample size: Large

Distribution (graph): Bell shape


Non-parametric

**Data type: Categorical** 

Sample size: Small (<30)

**Distribution (graph): With outliers** 





## **Tabulation**

#### 10 year follow-up study of health behavior and mortality

tabulate sm outcome, row chi

|                | outc         |                      |            |
|----------------|--------------|----------------------|------------|
| sm             | alive        | dead                 | Total      |
| current smoker | 61<br>41.78  | 85<br>58 <b>.</b> 22 | 146        |
| ex-smoker      | 74<br>52.48  | 67<br>47 <b>.</b> 52 | 141        |
| non smoker     | 268<br>66.34 | 136<br>33.66         | 404        |
| Total          | 403<br>58.32 | 288<br>41.68         | 691        |
| Pearso         | on chi2(2) = | 29.0882              | Pr = 0.000 |

Mortality is significantly different among three groups.

You can not say:

Mortality is significantly higher for current smoker.



## Contraceptive STD + STD - Methods

Condom

OC

IUD

•

•

•

#### **Categorical data**

- 1. Descriptive analysis only
- 2. Re-categorize into major categories
- 3. Re-categorize into one item of interest and others

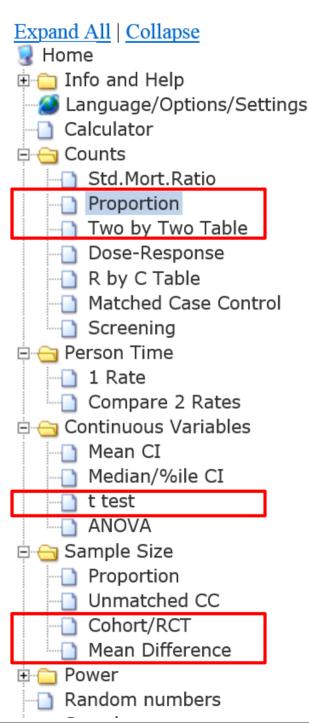
#### **Continuous data**

- 1. Descriptive analysis only
- 2. Re-categorize into two by using
  - 1) a standard cut-off value
  - 2) mean or median or quantile value

| dep         | <br> <br>      | conf<br>0   | 1           | Total            |
|-------------|----------------|-------------|-------------|------------------|
| 0<br>1<br>2 | <br> <br> <br> | 9<br>2<br>0 | 2<br>2<br>3 | 11<br>  4<br>  3 |
| Total       | +<br>          | <br>11      | 7           | +<br>l 18        |

Maternal confidence and Two-item depression score  $(0-2; \ge 1 = depression tendency)$ 

## Quick analysis using OpenEpi




http://www.openepi.com

#### Useful when...

- 1. You want to calculate 95%CI of a proportion.
- 2. You have a filled contingency table and want to perform a statistical test.
- 3. You know mean (SD) of your data and want to perform a statistical test.
- 4. You want to calculate a sample size.





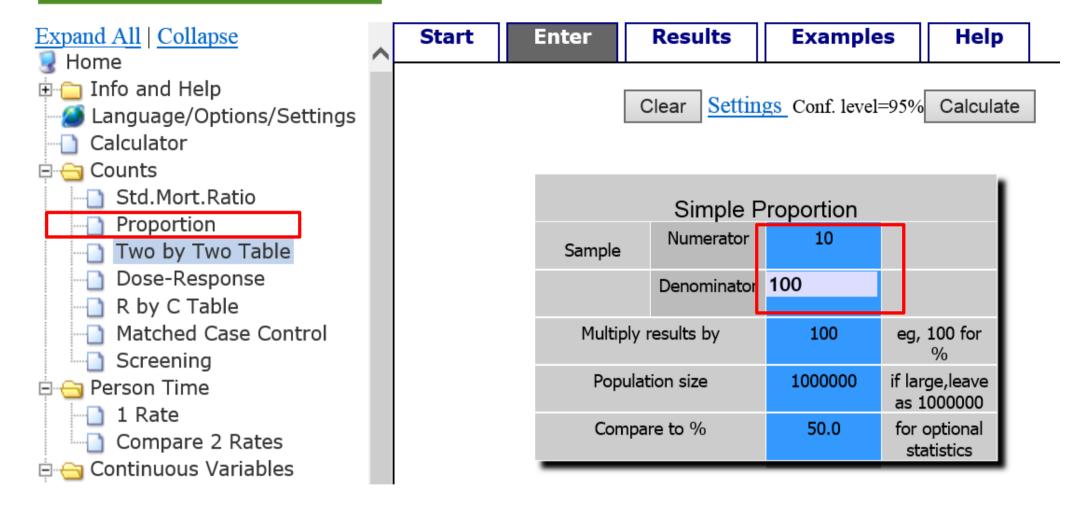


Now in English, French, Spanish, Italian, ar

Version 3.03a Updated 2015/05/04 Try it in a S.



OpenEpi provid studies, stratifie analysis, sample and other evalua other useful site


OpenEpi is free from a web serv required. The pi with recent Lini seeing this, you the browsers of

Test results are always a good i Links to hundre manual at [Info

The programs h

translated. Some of the components from other sources hav

#### **Proportion**





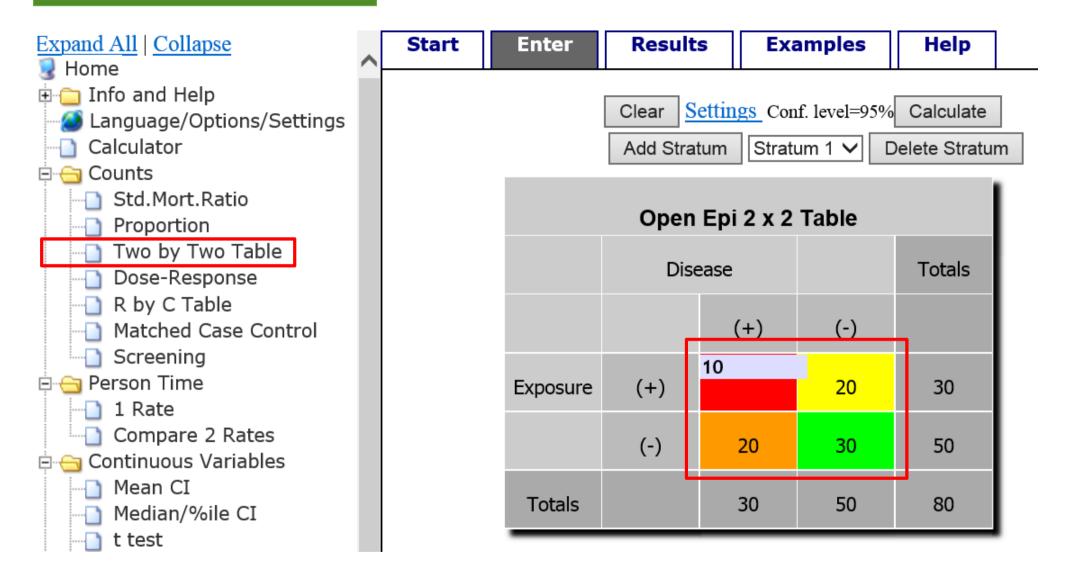
| Start Enter | Results | Examples | Help |  |
|-------------|---------|----------|------|--|
|-------------|---------|----------|------|--|

#### 95% Confidence Limits for Proportion 10/100 Multiplier=100

Large population size or sample with replacement.

#### Lower CL Per 100 Upper CL

|       | 10                            |
|-------|-------------------------------|
| 5.193 | 17.1                          |
| 4.9   | 17.62                         |
| 4.12  | 15.88                         |
| 5.349 | 17.61                         |
| 5.523 | 17.44                         |
|       |                               |
| 5.163 | 18.04                         |
|       | 4.9<br>4.12<br>5.349<br>5.523 |


<sup>\*</sup>LookFirst items: Editor's choice of items to examine first.

One-Sample Test for Binomial Proportion, Normal-Theory Method Does proportion 0.1 differ from 0.5?

Results from OpenEpi, Version 3, open source calculator--Proportion Print from the browser with ctrl-P or select text to copy and paste to other programs.



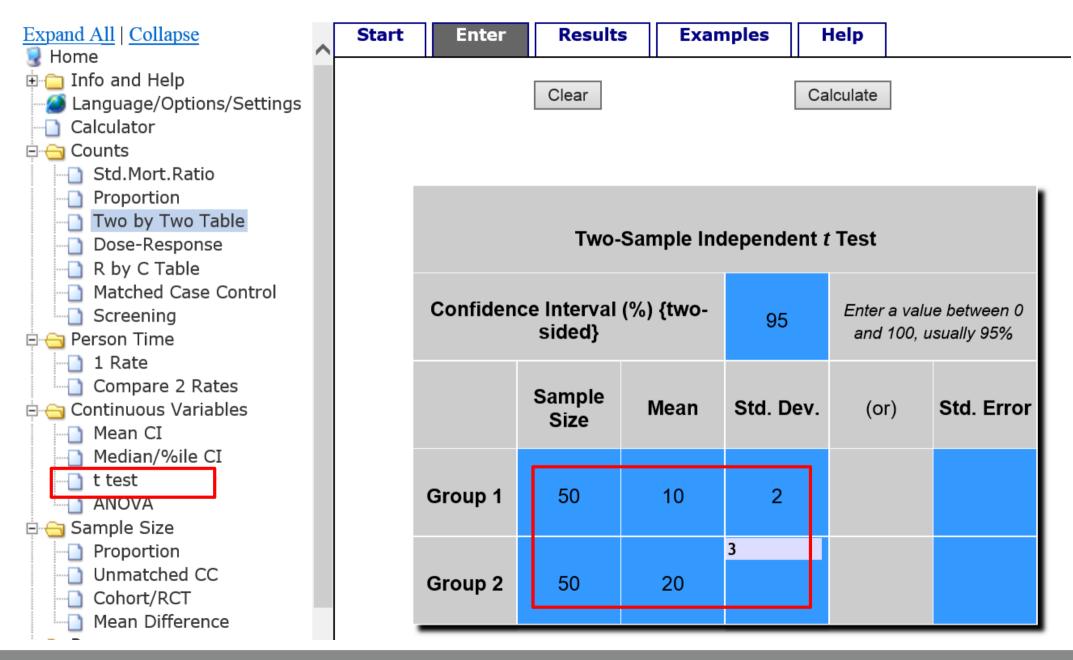
### Two by Two



Start Enter Results Examples Help

#### 2 x 2 Table Statistics

#### **Single Table Analysis**


Disease (+) (-) (+) 10 2030 Exposure(-) 20 3050 30 5080

#### Chi Square and Exact Measures of Association

| Test                       | Value  | p-value(1-tail) | p-value(2-tail) |
|----------------------------|--------|-----------------|-----------------|
| Uncorrected chi square     | 0.3556 | 0.2755          | 0.5510          |
| Yates corrected chi square | 0.128  | 0.3603          | 0.7205          |
| Mantel-Haenszel chi square | 0.3511 | 0.2767          | 0.5535          |
| Fisher exact               |        | 0.3621(P)       | 0.7243          |
| Mid-P exact                |        | 0.2823(P)       | 0.5647          |



#### T test



| Start                         | Enter | Results | Examples | Help |  |
|-------------------------------|-------|---------|----------|------|--|
|                               |       |         |          |      |  |
| Two-Sample Independent t Test |       |         |          |      |  |
|                               |       |         |          |      |  |

| Input | Data |
|-------|------|
|-------|------|

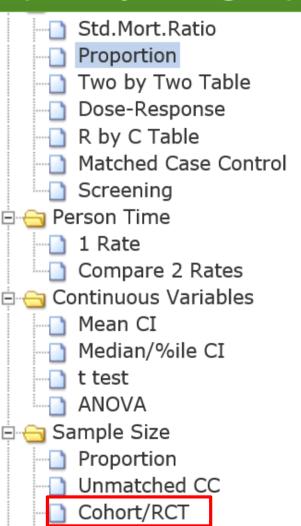
| Two-sided confid | ence interval | 95%               | Ó         |            |  |
|------------------|---------------|-------------------|-----------|------------|--|
| Group-1          | Sample size   | <b>Mean</b><br>10 | Std. Dev. | Std. Error |  |
| Group-2          | 50            | 12                | 3         |            |  |

| Result           | t statistics | df | p-value <sup>1</sup> Mea |
|------------------|--------------|----|--------------------------|
| Equal variance   | -3.92232     | 98 | 0.0001628                |
| Unequal variance | -3.92232     | 85 | 0.0001772                |

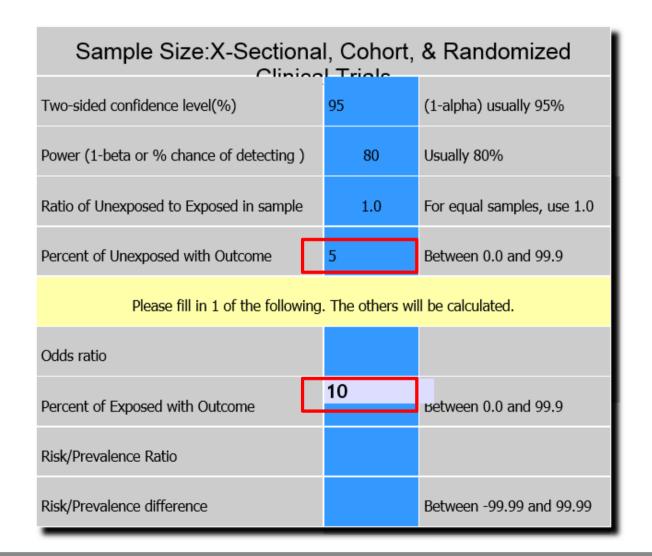
If this p value is 0.05 or higher, select the equal variance p value. If under 0.05, select the unequal variance p value.

F statistics df(numerator, denominator)

Test for equality of variance<sup>2</sup> 2.25


49,49

**p-value**<sup>1</sup> 0.005325

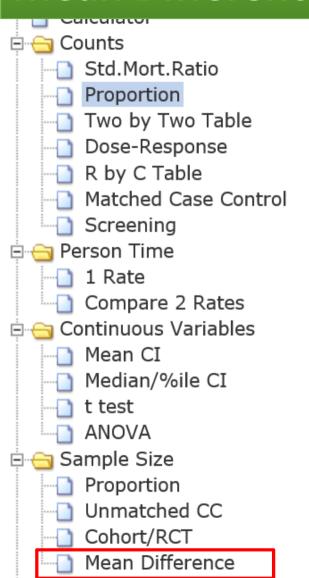

<sup>&</sup>lt;sup>1</sup> p-value (two-tailed)

 $<sup>^2</sup>$  Hartley's f test for equality of variance

# Sample size: Cohort/RCT (Comparing %)



| Start | Enter | Results | Examples | Help      |  |
|-------|-------|---------|----------|-----------|--|
|       |       | Clear   |          | Calculate |  |




| Start | Enter | Results | Examples | Help |
|-------|-------|---------|----------|------|
|-------|-------|---------|----------|------|

| Sample Size:X-Sectional, Cohort, & Randomiz | zed Clinical Trials |
|---------------------------------------------|---------------------|
| Two-sided significance level(1-alpha):      | 95                  |
| Power(1-beta, % chance of detecting):       | 80                  |
| Ratio of sample size, Unexposed/Exposed:    | 1                   |
| Percent of Unexposed with Outcome:          | 5                   |
| Percent of Exposed with Outcome:            | 10                  |
| Odds Ratio:                                 | 2.1                 |
| Risk/Prevalence Ratio:                      | 2                   |
| Risk/Prevalence difference:                 | 5                   |

|                                                 | Kelsey     | Fleiss     | Fleiss with CC |
|-------------------------------------------------|------------|------------|----------------|
| Sample Size - Exposed<br>Sample Size-Nonexposed | 437<br>437 | 436<br>436 | 475<br>475     |
| Total sample size:                              | 874        | 872        | 950            |

## Sample size: Mean Difference



| Start | Enter | Results | Examples | Help      |   |
|-------|-------|---------|----------|-----------|---|
|       |       | Clear   |          | Calculate | 1 |

| Sample Size For Comparing Two Means       |         |         |                                        |                                                 |  |  |  |
|-------------------------------------------|---------|---------|----------------------------------------|-------------------------------------------------|--|--|--|
| Confidence Interval %<br>(two-sided)      |         |         | 95                                     | Enter a value between 0 and 100,<br>usually 95% |  |  |  |
|                                           | Power   |         | 80                                     | Enter a value between 0 and 100, usually 80%    |  |  |  |
| Ratio of sample size<br>(Group 2/Group 1) |         | 1       |                                        |                                                 |  |  |  |
| Group 1                                   |         | Group 2 | Enter means OR difference on next line |                                                 |  |  |  |
|                                           |         |         |                                        |                                                 |  |  |  |
| Mean                                      | 10      | and     | 12                                     | or Difference                                   |  |  |  |
| Mean<br>Std.<br>Dev.                      | 10<br>3 | and     | 12<br>4                                |                                                 |  |  |  |

**Start** 

Enter

Results

**Examples** 

Help

#### Sample Size For Comparing Two Means

#### **Input Data**

Confidence Interval (2-sided) 95% Power 80%

Ratio of sample size (Group 2/Group 1) 1

|                    | Group 1 | Group 21 | Difference* |
|--------------------|---------|----------|-------------|
| Mean               | 10      | 12       | -2          |
| Standard deviation | 3       | 4        |             |
| Variance           | 9       | 16       |             |

| Sample size of Group 1 | 50  |
|------------------------|-----|
| Sample size of Group 2 | 50  |
| Total sample size      | 100 |



## **Exercise data**

|                           | Mean (SE        |                 |          |
|---------------------------|-----------------|-----------------|----------|
|                           | City A<br>N=200 | City B<br>N=200 | p-value* |
| Systolic blood pressure   | 123 (20)        | 120 (25)        |          |
| Hypertension              |                 |                 |          |
| Yes                       | 20 (10%)        | 12 (6%)         |          |
| No                        | 180 (90%)       | 188 (94%)       |          |
| * T-test or Chi-square te | st was used.    |                 |          |





#### **Assignments**

- 1. Calculate 95% confidence interval of a prevalence of hypertension in each city. "Proportion"
- 2. Select and perform an appropriate statistical test for each item (BP and HT). "Two by Two" or "t test"
- The sample data is from a pilot test. Calculate a sample size for the main survey. "Cohort/RCT" or "Mean Difference"
- 4. Try ADVANCE exercise



## Hypothesis testing

### Is new Drug A more effective than Drug B?

- → Is there a difference in the effect of Drug A and Drug B?
- → Probability that the null hypothesis (effect of A = effect of B) is true

You check the difference by rejecting (p<0.05) the hypothesis that two are the same.

NOTE. Even if p value is higher than 0.05, it does not mean that the null hypothesis is true. P is just a probability.



#### Simple understanding

You don't want to make a mistake by saying that the new drug is effective when it is not.

You want to make the probability of the mistake to be small. Low p value means less chance of making the mistake and you are more confident that there is a real difference.

|                                | Truth - Different | Truth - Same |
|--------------------------------|-------------------|--------------|
| Survey result<br>Different     |                   | P value      |
| Survey result<br>Not different |                   |              |



#### ADVANCED statistical understanding

|                                | Truth Null hypothesis is NOT true       | Truth Null hypothesis is true                      |
|--------------------------------|-----------------------------------------|----------------------------------------------------|
| Reject the null hypothesis     | Power                                   | Type I error<br>False positive<br>Alpha<br>P value |
| NOT reject the null hypothesis | Type II error<br>False negative<br>Beta |                                                    |

IAEA - Hiroshima University Consultancy Meeting Science, Technology and Society Perspectives on Nuclear Science, Radiation and Human Health – The International Perspective

# Health literacy promotion in Fukushima after the nuclear accident:

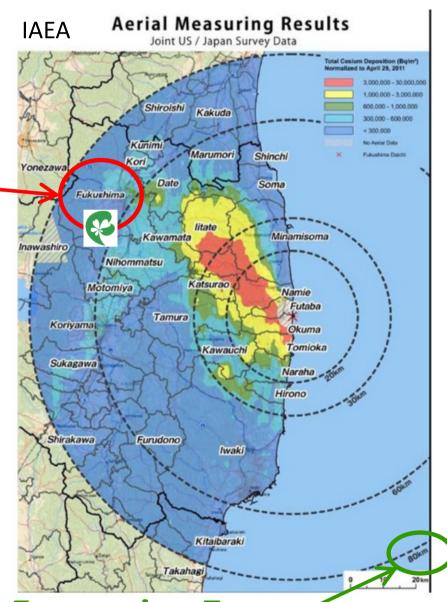
A case of responding to health care professionals' needs through the development of a health literacy toolkit

#### **Aya Goto**

Center for Integrated Science and Humanities Fukushima Medical University

### Fukushima nuclear accident

#### **Fukushima City**




15% decline in under 5-yo pop. in 2 years

Depression and decline in maternal confidence among Fukushima mothers

BMC Psychiatry. 2015; 15: 59.

J Commun Healthc. 2014; 7: 106-116.



50 miles: US Recommended Evacuation Zone

Fear of unknown health effects of radiation contamination due to confusing and often contradicting health risk messages with difficult scientific data

Picture: Leaflets about radiation placed in the lobby of a health center in Fukushima City.



## **Community health workers**

#### Government



## Fukushima Nuclear Accident Independent Investigation Commission

"Information for residents to make informed decisions"

How do we respond to parents' concerns?



#### **Public health nurses**

(gate keepers of community health)

#### **Nursery school teachers**

(key players of maternal and child health)



## **Health literacy**

"The cognitive and social skills which determine the motivation and ability of individuals to gain access to understand and use information in ways which promote and maintain good health" WHO, 1998



http://www.hsph.harvard.edu/healthliteracy/overview/



## **Health literacy training**

Table 2 Content of the health literacy training program in Fukushima City

| First session                                         | Second session                                           | Follow-up survey                     |
|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------|
| 1. Ice-breaking activity                              | 1. Review quiz                                           | 1. Review of one-month application   |
| 2. Lecture                                            | 2. Lecture                                               | 2. Training evaluation               |
| <ul> <li>General background of health</li> </ul>      | Techniques to improve;                                   | 3. Distribute additional information |
| literacy                                              | • Text                                                   | leaflet about tips to apply health   |
| <ul> <li>Instructions to use material</li> </ul>      | Graphics                                                 | literacy in practice                 |
| assessment tools                                      | <ul> <li>Risk presentation</li> </ul>                    |                                      |
| 3. Exercise                                           | 3. Exercise                                              |                                      |
| <ul> <li>Assessment of an assigned written</li> </ul> | <ul> <li>Revision of their own materials that</li> </ul> |                                      |
| health material                                       | they had assessed as homework                            |                                      |
| 4. Training evaluation                                | 4. Training evaluation                                   |                                      |
| 5. Homework                                           | 5. Homework                                              |                                      |
| <ul> <li>Assessment of materials that</li> </ul>      | <ul> <li>Apply learned knowledge and skills</li> </ul>   |                                      |
| participants themselves developed                     | in practice                                              |                                      |

- Goto A, et al. Japan Medical Association Journal. 2014; 57: 146-53.
- Rudd RE. Assessing health materials: Eliminating barriers increasing access. 2010. http://www.hsph.harvard.edu/healthliteracy/

## Training content

- Sentences: Grade level, topic sentence
- Numbers: Numeracy level RISK is one of the most difficult statistical concepts.

(Apter AJ, et al. J Gen Intern Med. 2008;23(12):2117-24.)



Communication: Marker method



(Method to ask readers to mark difficult words and phrases.)

## **Training evaluation**

- Workshop evaluation surveys among participants
- 65 nurses and 45 teachers who attended workshops in 2013-2014
- At the end of each session, 1 month (nurses only) and 1 year after the second session.
- Evaluation items
  - Application, confidence gain and interest in further training.
  - ■12 specific training goals: 4 items each on knowledge, material assessment and development
  - Opinions on applications and barriers of learned skills in daily practices

Japan Medical Association Journal. 2015; 58: 1-9. Journal of Seizon and Life Sciences. 2017; 27: 192-207.

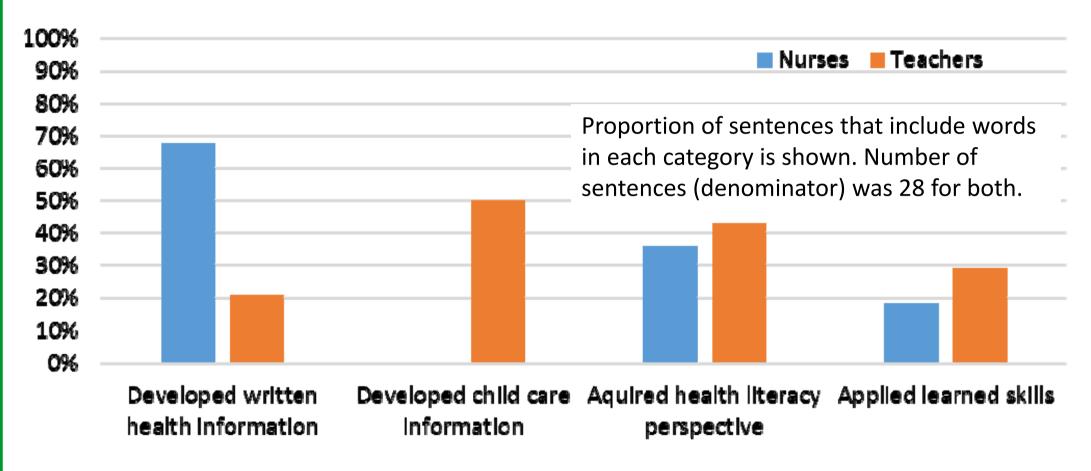
## Achievements toward training objectives

|                                                                                              | TOTAL<br>(N=57) | Nurses<br>(N=31) | Teachers (N=26) |
|----------------------------------------------------------------------------------------------|-----------------|------------------|-----------------|
| I applied learned skills in practice.                                                        | 61%             | 68%              | 47%             |
| I gained confidence in assessing in revising written materials.                              | 27%             | 32%              | 20%             |
| I want to attend further training.                                                           | 68%             | 81%              | 54%             |
| Selected knowledge items I can explain health literacy needs. I can explain numeracy levels. | 42%<br>9%       | 65%<br>12%       | 15%<br>4%       |
| Selected assessment items I can use the Marker Method                                        | 47%             | 61%              | 29%             |
| Selected development items I can write easy-to-read text. I can explain risk.                | 44%<br>14%      | 52%<br>16%       | 35%<br>12%      |

## **Application and confidence**

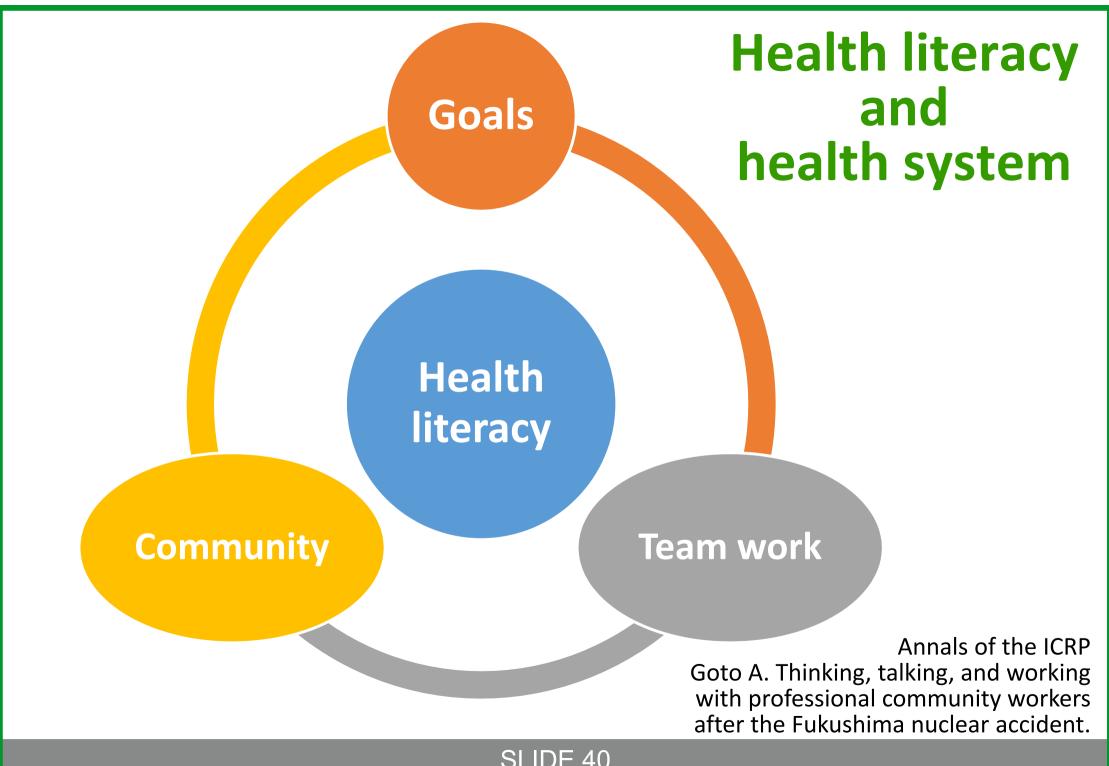
| Nurses and teachers                                             | Non-users<br>(N=22) |     | P valu | e |
|-----------------------------------------------------------------|---------------------|-----|--------|---|
| I gained confidence in assessing and revising written materials | 32%                 | 45% | ( )    |   |
| I want to attend further training.                              | 41%                 | 86% | ( )    |   |

A five-ping Likert-scale ranging from highly disagree (1) to highly agree (5) was used. Those who answered 4 and 5 to the item "I applied learned skills in practice" was classified as users. Chi-square test was used.




#### **Assignments**

- 1. First table: Interpret the results
- 2. Second table: Calculate p values and interpret the results




## Applications during the follow-up



"Even among staff, we started circulating documents and getting signatures in addition to oral communication." (Nursery school teacher)

**FUKUSHIMA** 

